Farsi handwritten digit recognition based on mixture of RBF experts
نویسندگان
چکیده
منابع مشابه
FPGA-Based Farsi Handwritten Digit Recognition System
A new method for feature extraction based on FPGA (Field Programmable Gate Arrays) implementation is proposed in this paper. The specific application is offline Farsi handwritten digit recognition. The classification is based on a simple two layer MLP (Multi Layer Perceptron). This method of feature extraction is appropriate for FPGA implementation as it can be implemented only with addition an...
متن کاملMixture of Experts for Persian handwritten word recognition
This paper presents the results of Persian handwritten word recognition based on Mixture of Experts technique. In the basic form of ME the problem space is automatically divided into several subspaces for the experts, and the outputs of experts are combined by a gating network. In our proposed model, we used Mixture of Experts Multi Layered Perceptrons with Momentum term, in the classification ...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملPersian handwritten digits recognition: A divide and conquer approach based on mixture of MLP experts
In pursuit of Persian handwritten digit recognition, many machine learning techniques have been utilized. Mixture of experts (MOE) is one of the most popular and interesting combining methods which has great potential to improve performance in machine learning. In MOE, during a competitive learning process, the gating networks supervise dividing input space between experts and experts obtain sp...
متن کاملModel-based online handwritten digit recognition
This paper presents a hidden Markov model (HMM) based approach to on-line handwritten digit recognition using stroke sequences. In this approach, a character instance is represented by a sequence of symbolic strokes, and the representation is obtained by component segmentation and stroke classification. The component segmentation is based on the delta lognormal model of handwriting generation. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Electronics Express
سال: 2010
ISSN: 1349-2543
DOI: 10.1587/elex.7.1014